jueves, 27 de mayo de 2010

Enlaces Quimicos

QUE SON LOS ENLACES?

Cuando se acercan dos átomos mutuamente, se ejercen varias fuerzas entre ellos. Algunas de estas fuerzas tratan de mantener los átomos unidos, otras tienden a separarlos. en la mayoría de los átomos, con excepción de los gases nobles , las fuerzas atractivas son superiores a las repulsivas y los átomos se acercan formando un enlace. Así, se considera al enlace químico como la fuerza que mantiene unidos a dos o más átomos dentro de una molécula.


Linus Pauling

Al inicio de la década de 1930, Pauling comenzó a publicar sus investigaciones sobre la naturaleza del enlace químico, lo que llevó a la edición de su famoso libro de texto The Nature of the Chemical Bond, publicado en 1939. Este libro es considerado uno de los más importantes trabajos de química jamás publicados. Se puede tener una idea de su influencia con sólo recordar que en los primeros treinta años después de su primera edición, el libro fue citado más de 16.000 veces por otros autores, lo que lo convierte en la investigación más citada como referencia en el mundo científico. Las investigaciones en esta área le valieron a Pauling el Premio Nobel de Química en 1954 "por sus investigaciones sobre la naturaleza del enlace químico y sus aplicaciones a la determinación de la estructura de las substancias complejas".

Como parte de sus investigaciones sobre la naturaleza del enlace químico, Pauling creó el concepto de hibridación de los orbitales atómicos. La mecánica cuántica utiliza el número cuántico l para determinar el número máximo de electrones en cada orbital (llamando a los orbitales con las letras s, p, d, f, g y h); Pauling observó que para describir el enlace en las moléculas, es preferible construir funciones que son una mezcla de estos orbitales. Por ejemplo, los orbitales 2s y 2p de un átomo de carbono, se pueden combinar para formar cuatro orbitales equivalentes, llamados orbitales híbridos sp3. Estos orbitales híbridos pueden describir mejor la existencia de compuestos como el metano, de geometría tetraédrica. Asimismo, el orbital 2s puede combinarse con dos orbitales 2p, formando tres orbitales equivalentes, llamados orbitales híbridos sp2, mientras que el tercer orbital 2p no se hibrida. Esta estructura permite describir a los compuestos insaturados, como el etileno.

Otro de los terrenos en los que Pauling estaba interesado, era la comprensión de la relación entre los enlaces iónicos, en los cuales los electrones son transferidos de un átomo a otro, y los enlaces covalentes, en los cuales ambos átomos aportan electrones. Pauling demostró que estos dos tipos de enlaces, son en realidad casos extremos, y que la mayoría de los enlaces son en realidad una combinación de enlace iónico con covalente. Es en este terreno donde la noción de electronegatividad es más útil, pues la diferencia entre las electronegatividades de los átomos participantes en un enlace resulta ser la medida más adecuada para predecir el grado de ionicidad de un enlace.

El tercer tema en el que Pauling trabajó, aún en el terreno de los enlaces químicos, fue la comprensión y descripción de la estructura de los compuestos aromáticos; especialmente el benceno (C6H6), el compuesto más simple de los aromáticos.



Estructura del benceno.

La estructura del benceno siempre había sido motivo de controversia entre los científicos, pues no quedaba clara la manera en la que seis átomos de carbono y seis de hidrógeno podían enlazarse satisfaciendo todo su potencial de enlace.[5] Hasta ese momento, la mejor descripción sobre dicha estructura, era la formulada por el químico alemán Friedrich Kekulé. En ella, Kekulé describía esta estructura como la transición rápida entre dos estructuras donde se alternaban de posición los enlaces simples y dobles. Pauling propuso una estructura intermedia, basada en la mecánica cuántica, que considera una superposición de las dos estructuras de Kekulé. Más adelante, este fenómeno recibió el nombre de resonancia.

En cierto modo, la resonancia es análoga al fenómeno de hibridación de los orbitales atómicos, ya que consiste en la combinación de varias estructuras electrónicas: en ella, los orbitales de diferentes átomos de carbono se combinan para formar los orbitales moleculares.



ENLACE IÓNICO:

Este enlace se origina cuando se transfiere uno o varios electrones de un átomo a otro. Debido al intercambio electrónico, los átomos se cargan positiva y negativamente, estableciéndose así una fuerza de atracción electrostática que los enlaza. Se forma entre dos átomos con una apreciable diferencia de electronegatividades, los elementos de los grupos I y II A forman enlaces iónicos con los elementos de los grupos VI y VII A.

EJEMPLO:

ENLACE COVALENTE

Se presenta cuando se comparten uno o más pares de electrones entre dos átomos cuya diferencia de electronegatividad es pequeña.

EJEMPLO:

Enlace covalente apolar:

Se establece entre átomos con igual electronegatividad. Átomos del mismo elemento presentan este tipo de enlace.

EJEMPLO:

Enlace covalente polar:

Se establece entre átomos con electronegatividades próximas pero no iguales

EJEMPLO:

Enlace covalente coordinado:

Se establece por compartición de electrones entre dos átomos pero un átomo aporta el par de electrones compartidos.

EJEMPLO:

ENLACE METÁLICO

Los electrones que participan en él se mueven libremente, a causa de la poca fuerza de atracción del núcleo sobre los electrones de su periferia.



Enlace de hidrogeno

Un enlace de hidrógeno es la fuerza atractiva entre un átomo electronegativo y un átomo de hidrógeno unido covalentemente a otro átomo electronegativo. Resulta de la formación de una fuerza dipolo-dipolo con un átomo de hidrógeno unido a un átomo de nitrógeno, oxígeno o flúor (de ahí el nombre de "enlace de hidrógeno", que no debe confundirse con un enlace covalente a átomos de hidrógeno). La energía de un enlace de hidrógeno (típicamente de 5 a 30 kJ/mol) es comparable a la de los enlaces covalentes débiles (155 kJ/mol), y un enlace covalente típico es sólo 20 veces más fuerte que un enlace de hidrógeno intermolecular. Estos enlaces pueden ocurrir entre moléculas (intermolecularidad), o entre diferentes partes de una misma molécula (intramolecularidad). El enlace de hidrógeno es una fuerza de van der Waals dipolo-dipolo fija muy fuerte, pero más débil que el enlace covalente o el enlace iónico. El enlace de hidrógeno está en algún lugar intermedio entre un enlace covalente y una simple atracción electrostática intermolecular. Este tipo de enlace ocurre tanto en moléculas inorgánicas tales como el agua, y en moléculas orgánicas como el ADN.


EJEMPLOS:
  • Qué tipo de enlace se formará entre H y O?

Según la Tabla de Electronegatividades de Pauli, el Hidrógeno tiene una Electronegatividad de 2.2 y el Oxígeno 3.44, por lo tanto la diferencia de electronegatividades será:

3.44 - 2.2 = 1.24
1.24 es menor que 2.0 y mayor que 0.5.

Por lo tanto, el enlace será Covalente Polar.


Van der Waals

Las fuerzas de Van der Waals son fuerzas de estabilización molecular; forman un enlace químico no covalente en el que participan dos tipos de fuerzas o interacciones, las fuerzas de dispersión (que son fuerzas de atracción) y las fuerzas de repulsión entre las capas electrónicas de 2 átomos contiguos.

Fuerzas de dispersión

Todos los átomos, aunque sean apolares, forman pequeños dipolos debidos al giro de los electrones en torno al núcleo (véase átomo). La presencia de este dipolo transitorio hace que los átomos contiguos también se polaricen, de tal manera que se producen pequeñas fuerzas de atracción electrostática entre los dipolos que forman todos los átomos

2. Repulsión electrostática

A estas fuerzas de dispersión se opone la repulsión electrostática entre las capas electrónicas de dos átomos contiguos.

La resultante de estas fuerzas opuestas es una distanciamínima permitida entre los núcleos de dos átomos contiguos. Distancia que se conoce como radio de Van der Waals.

Es ésta una fuerza muy importante en biología, porque es uno de los enlaces no covalentes que estabilizan la conformación de las proteínas.

La energía del enlace de Van der Waals es de 1–2 kcal/mol.

Las fuerzas de Van der Waals conforman el tipo más débil de fuerza intermolecular que puede darse en la naturaleza, necesitándose un aporte energético de 0,1 a 35 kJ/mol para romper dicha interacción. Distinguimos tres clases de enlace de Van der Waals:

Orientación: interacción dipolo permanente-dipolo permanente. Tienen lugar entre moléculas polares como el HCl por ejemplo, produciéndose una atracción eléctrica entre polos opuestos de moléculas contiguas, pero no así el solapamiento de los átomos interactuantes al ser de mayor tamaño que en el puente de hidrógeno.(Recordemos que el solapamiento sólo se produce en el enlace de hidrógeno, donde el N, el O y el F son especies más pequeñas). Cuanto mayor sea la polaridad de la molécula (diferencia de electronegatividad entre los átomos que la forman), más fuerte será la interacción.

Inducción: interacción dipolo permanente-dipolo inducido. Se produce entre una molécula polar y otra apolar. En este tipo de interacción, el dipolo permanente de la molécula polar provoca una deformación en la nube electrónica de la molécula apolar que se aproxima(el polo negativo de la molécula polar induce el desplazamiento de lo electrones de la molécula polar hacia el polo opuesto, apareciendo un dipolo). De este modo, se establece una atracción eléctrica entre polos opuestos.

Este tipo de enlace también se conoce como polarización, siendo tanto más intenso cuanto mayor sea la polarización de la molécula apolar. La intensidad de este fenómeno dependerá de la mayor o menor polaridad (diferencia de electronegatividad entre los átomos que forman la molécula polarizante; la polar) así como del tamaño de la molécula polarizada (a mayor número de electrones, más desigualdad de disposición puede existir).

Dispersión (Fuerzas de London): dipolo instantáneo-dipolo instantáneo. Aparecen en todos los compuestos moleculares, siendo la única fuerza intermolecular que aparece entre moléculas apolares. Se produce por la aparición de una distribución asimétrica de la carga en una molécula (dado el movimiento continuo de los electrones). Este fenómeno induce la aparición de un dipolo instantáneo en la molécula que se aproxima, estableciéndose una interacción muy débil e instantánea.

La intensidad de esta interacción depende del tamaño de la molécula (a mayor número de electrones, mayor posibilidad de la aparición de un dipolo instantáneo).


Estructuras de Lewis

Los gases nobles se encuentran formados por átomos aislados porque no requieren compartir electrones entre dos o más átomos, ya que tienen en su capa de valencia ocho electrones, lo que les da su gran estabilidad e inercia.

Los otros elementos gaseosos en cambio, se encuentran siempre formando moléculas diatómicas. Veamos por qué.

Cada átomo de flúor tiene siete electrones en su capa de valencia, le falta sólo uno para lograr completar los ocho, que según la Regla del Octeto, le dan estabilidad.

Si cada átomo de flúor comparte su electrón impar con otro átomo de flúor, ambos tendrán ocho electrones a su alrededor y se habrá formado un enlace covalente con esos dos electrones que se comparten entre ambos átomos

Esta idea de la formación de un enlace mediante la compartición de un par de electrones fue propuesta por Lewis, y sigue siendo un concepto fundamental en la comprensión del enlace químico.

Podemos aplicar el modelo de Lewis para explicar la formación de la molécula de Oxígeno

Para que cada uno de los dos átomos de oxígeno complete un octeto de electrones, es necesario que compartan entre ellos DOS pares electrónicos. A esta situación se le conoce como DOBLE ENLACE.

De manera análoga, la formación de la molécula diatómica de nitrógeno mediante el modelo de Lewis, lleva a plantear un TRIPLE ENLACE entre los átomos de N, para que ambos completen el octeto.

El hidrógeno elemental también está constituido por moléculas diatómicas, pero debido a que están formadas por átomos con un solo electrón, es imposible que cumpla con la regla del octeto, el hidrógeno sólo tiende a tener DOS electrones alrededor.

Otros ejemplos de sustancias gaseosas, pero formados por dos elementos son; los óxidos de carbono, los óxidos de nitrógeno y los halogenuros de hidrógeno.

A continuación se ve la representación de Lewis para estos últimos; X puede ser F, Cl, Br ó I, todos ellos tienen siete electrones en su capa de valencia:

Otros ejemplos de compuestos gaseosos formados por moléculas con más de dos átomos, son: los dióxidos de carbono, nitrógeno y azufre, (CO2, NO2, SO2). El amoniaco (NH3), el metano (CH4), y el sulfuro de hidrógeno (H2S).

Método general para obtener estructuras de Lewis

· · Observa el tipo y el número de átomos que tiene el compuesto, a partir de su fórmula química.

· · Determina el número de electrones de valencia que tiene cada átomo, para lo cual puedes utilizar su posición en la tabla periódica. Con esta información también conoces el número total de electrones de valencia que vas a utilizar para construir la estructura de puntos.

· · Dibuja una propuesta de esqueleto para el compuesto. Para ello une a los átomos presentes entre sí con líneas rectas (éstas representan pares de electrones compartidos, o sea, enlaces sencillos). Este paso puede resultar difícil, ya que no es común contar con suficiente información para esbozar el esqueleto. Sin embargo, y a menos que tengas alguna otra información, asume que en moléculas sencillas que tienen un átomo de un elemento y varios átomos de otro, el átomo único está en el centro.

· · Coloca los puntos alrededor de los átomos de tal manera que cada uno tenga ocho electrones (para cumplir con la regla del octeto). Recuerda que el hidrógeno es una excepción y tan sólo tendrá dos puntos.

· · Verifica que el número total de electrones de valencia esté plasmado en tu estructura. Si no es el caso, posiblemente se trate de un compuesto que no satisface la regla del octeto (ve la sección “¡Error! No se encuentra el origen de la referencia.”).

Como un ejemplo del empleo de estas reglas, en la Tabla 5 se resume la determinación de la estructura de puntos del cloroformo, CHCl3. El compuesto cumple con la regla del octeto y al completar los octetos de carbono y cloros nos encontramos con los 26 electrones de valencia en total.

Tabla. Determinación de la estructura de Lewis del CHCl3.

Molécula

Tipo y número de átomos

Electrones de valencia de cada átomo

Número total de electrones de valencia

Estructura del esqueleto

Arreglo de los puntos

CHCl3

C=1

H=1

Cl=3

C=4

H=1

Cl=7

C=1x4=4

H=1x1=1

Cl=3x7=21

TOTAL=26

Moléculas con enlaces dobles y triples

Ya vimos como el modelo de Lewis explica las moléculas de O2 y de N2.

Tomemos ahora el caso del dióxido de carbono (CO2) y tratemos de dibujar su estructura de puntos. En la Tabla 6 se resumen la información necesaria y las estructuras posibles para esta molécula.

Otros ejemplos de moléculas con enlaces múltiples son el cianuro de hidrógeno, HCN y el formol, H2CO. Dibuja sus estructuras de Lewis.

Tabl. Determinación de la estructura de puntos del CO2.

Molécula

Tipo y número de átomos que forman la molécula

Electrones de valencia de cada átomo

Número total de electrones de valencia

Estructura del esqueleto

Arreglo de los puntos

CO2

C=1

O=2

C=4

O=6

C=1 x 4=4

O=2 x 6=12

TOTAL=16

O-C-O